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Abstract A nonsimilar boundary layer analysis is presented for the problem of free convection
in power-law type non-Newtonian fluids along a permeable vertical plate with variable wall
temperature or heat flux distribution. Numerical results are presented for the details of the
velocity and temperature fields. A discussion is provided for the effect of viscosity index on the
surface heat transfer rate.

Nomenclature
f = dimensionless stream function
g = acceleration due to gravity (m/s2)
h = heat transfer coefficient (W/m2K)
k = thermal conductivity (W/mK)
K = permeability for the porous medium

(N mns2/kg)
L = plate length (m)
m = consistency index for viscosity (N sn/

m2)
n = viscosity index
Nu = Nusselt number
Pe = Peclet number
qw = wall heat flux (W/m2)
Ra = Raleigh number
T = temperature (K)

u,v = velocity components in x and y
directions (m/s)

x,y = axial and normal coordinates (m)
� = effective thermal diffusivity of

porous medium (m2/s)
� = volumetric coefficient of thermal

expansion (l/K)
� = similarity variable
� = dimensionless temperature
� = nonsimilar parameter
� = density of fluid (kg/m3)
 = stream function

Subscripts
w = wall conditions

Introduction
The porous media heat transfer problem studied in this paper has numerous
thermal engineering applications such as geothermal systems, crude oil
extraction, thermal insulation and ground water pollution. Cheng and
Minkowycz (1977) presented similarity solutions for free convective heat
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transfer from a vertical plate in a fluid-saturated porous medium. Gorla and co-
workers (Gorla and Zinolabedini, 1987; Gorla and Tornabene, 1988) solved the
nonsimilar problem of free convective heat transfer from a vertical plate
embedded in a saturated porous medium with an arbitrarily varying surface
temperature or heat flux. The problem of combined convection from vertical
plates in porous media was studied by Minkowycz et al. (1985) and
Ranganathan and Viskanta (1984). Nakayama and Pop (1985) presented
similarity solutions for the free, forced and combined convection. Hsieh et al.
(1993) derived nonsimilar solutions for combined convection from vertical
plates in porous media. Kumari and Gorla (1997) examined the combined
convection along a non-isothermal vertical plate in a porous medium. All these
studies were concerned with Newtonian fluid flows. A number of industrially
important fluids including fossil fuels which may saturate underground beds
display non-Newtonian behavior. Non-Newtonian fluids exhibit a nonlinear
relationship between shear stress and shear rate.

Chen and Chen (1988) presented similarity solutions for free convection of
non-Newtonian fluids over vertical surfaces in porous media. Nakayama and
Koyama (1991) studied the natural convection over a non-isothermal body of
arbitrary shape embedded in a porous medium.

The present work has been undertaken in order to analyze the free
convection from a vertical non-isothermal vertical plate embedded in non-
Newtonian fluid-saturated porous media. The boundary condition of variable
surface temperature or heat flux is treated in this paper. The power law model
of Ostwald de Waele, which is adequate for many non-Newtonian fluids is
considered here. The governing equations are first transformed into a
dimensionless form and the resulting nonsimilar set of equations is solved by a
finite difference method. Numerical results for the velocity and temperature
fields are presented.

Analysis
Let us consider the free convention in a porous medium from a permeable
vertical plate, which is heated and has a variable wall temperature or heat flux.
The properties of the fluid and the porous medium are assumed to be constant
and isotropic. The Darcy model is considered which is valid under conditions of
small pores of porous medium and flow velocity. The axial and normal
coordinates are x and y, and the corresponding flow velocities are u and v
respectively. Figure 1 shows the coordinate system and model of the flow. The
gravitational acceleration g is acting downwards opposite to the normal
coordinate y. The governing equations under the Boussinesq and boundary
layer approximations are given by
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� @v

@y
� 0 �1�
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In the above equations, T is the temperature of the fluid; n is the viscosity
index; � is the density of the fluid; K is the permeability of the porous medium;
� is the volumetric coefficient of thermal expansion; m is the consistency index
for viscosity; � is the equivalent thermal diffusivity of the porous medium.
With power law variation in wall temperature or heat flux, the boundary
conditions can be written as

y � 0 : v � Vw; �Tÿ T1� � Ax� or qw � Bx�

y � 1 : u � 0;T � T1
�4�

It may be shown that if the square of the normal velocity at the wall
varies inversely as the distance along the surface (i.e. Vw � xÿ1=2), then the
problem admits a similarity solution. We note that Vw is a prescribed constant
normal velocity at the wall. As shown by Cheng and Minkowycz (1977), the
problem becomes similar when (Tw ÿ T1) and qw are proportional to xÿ1=2.
Therefore, values of � other than ±1/2 cannot be analyzed by similarity
arguments.

In equation (4), A, B and � are prescribed constants. Note that � = 0
corresponds to the case of uniform wall temperature or heat flux. Although
power-law forms are assumed for the wall temperature and heat flux, other
types of boundary conditions could be handled by this method. The continuity
equation is automatically satisfied by defining a stream function  (x,y) such
that u � @ 

@y and v � ÿ @ 
@x.

Figure 1.
Coordinate system and

flow model
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We now define the following dimensionless variables:

�x � x

L
;�y � y

L

�u � u

U
;�v � v

U

U � �g�K�T0 ÿ T1�=m� �1=n

Ra � �g�K�T0 ÿ T1�Ln

m�n

Ra� � Ra1=n

�T � T ÿ T1
T0 ÿ T1

T0 � reference temperature

�5�

On substituting expressions in equation (5) into equations (1)-(4), we get:

@�u

@�x
� @�v

@�y
� 0 �6�

�u� �n� �T �7�

�u
@ �T

@�x
� �v

@ �T

@�y
� 1

Ra�
@2 �T

@�y2
�8�

The boundary conditions may be written as:

�y � 0 : �v � �Vw; �T � �x�or
@ �T

@�y
� ÿ 1

k
�x� �9�

In the interest of neatness in presentation, the overbars will be omitted from
now on.

A. Variable surface temperature case
Proceeding with the analysis, we define the following transformations:

� � yx
�ÿn
2n Ra�� �12

 � Ra�� �ÿ1
2x

n��
2n f ��; ��

� � Vwx
nÿ�
2n Ra�� �12

� � T

Tw

�10�

We note that � is the surface mass transfer and buoyancy parameter that
introduces nonsimilarity into the problem. The governing equations and
boundary conditions, equations (6)-(9), can then be transformed into
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�f 0�n � � �11�

�} ÿ � f 0 � � n� �
2n

� �
f �0 � nÿ �

2n

� �
� f 0

@�

@�
ÿ �0

@f

@�

� �
�12�

It may be noted that the governing equations (11) and (12) are nonsimilar (i.e.
they depend on � and �) because the normal velocity at the wall Vw has been
taken as a constant. However, if the normal velocity at the wall Vw � xÿ1=2,
then the equations (7) and (8) admit a similarity solution and equations (11) and
(12) would then depend only on �.

The transformed boundary conditions are given by:

n� �
2n

� �
f �;0
ÿ �� nÿ �

2n
�
@f

@�
�; 0� � � ÿ� or f �; 0� � � ÿ�; � �; 0� � � 1;

f 0 �; 1� � � 0 ; � � ; 1
ÿ � � 0

�13�
The primes in the above equations denote partial differentiations with respect
to �. The normal velocity at the wall is suction for negative values of � and
injection for positive values of �.

In the above system of equations, the dimensionless parameter � is a
measure of the mass transfer and buoyancy effect. Positive values of � indicate
injection whereas negative values denote suction. Some of the physical
quantities of interest include the velocity components u and v in the x and y
directions and the local Nusselt number.

The local Nusselt number is given by

Nux � hx=k �14�
where h is the heat transfer coefficient.

The velocity components and Nusselt number are given by:

u � x
�
n f 0 ��; �� �15�

v � ÿ Ra�� �ÿ1
2x

�ÿn
2n

n� �
2n

f �; �� � � �ÿ n

2n
� f 0 � ;�

ÿ �� nÿ �
2n

�
@f

@�

� �
�16�

Nux � ÿ Ra�� �12x��n
2n �0 �;0

ÿ � �17�

B. Variable surface heat flux case
For this case, the following dimensionless variables are introduced in the
transformation:
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� � x
�ÿn
2n�1y

� � Vwx
nÿ�
2n�1

 � x
��n�1
2n�1 f��; ��

� �; �
ÿ � � T

x
n 2��1� �

2n�1

� � �18�

Substituting expressions in equation (18) into the governing equations (6)-(9)
leads to

f 0� �n� � �19�

�00 � �� n� 1

2n� 1
f�0 ÿ n 2�� 1� �

2n� 1
f 0� � nÿ �

2n� 1
� f 0

@�

@�
ÿ �0 @f

@�

� �
�20�

with transformed boundary conditions:

��n�1� �
2n�1

f �;0� �� nÿ�
2n�1

�
@f

@�
�;0
ÿ ��ÿ� or f �; 0� ��ÿ�; �0��;0��ÿ1;

f 0 �;1
ÿ ��0 ; � �;1

ÿ ��0

�21�

and the primes in equations (19)-(21) denote partial differentiations with respect
to �.

Note that the � parameter here represents the surface mass transfer effect on
free convection. Positive values of � indicate injection whereas negative values
denote suction. The velocity components u and v and the local Nusselt number
for this case have the following expressions:

u � x
2��1
2n�1 f 0 �22�

v � ÿ x
�ÿn
2n�1

�� n� 1

2n� 1
f ÿ p�

@f

@�
� �ÿ n

2n� 1
� �f 0

� �
�23�

where

p � nÿ �
2n� 1

�24�

Nux � Ra
1
2 x��1=� �; 0

ÿ � �25�

where

Ra � L

�

�Kg�qwL

mk

� �1=n

�26�
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Numerical scheme
The numerical scheme to solve equations (11) and (12) adopted here is based on
a combination of the following concepts:

. The boundary conditions for � � 1 are replaced by

f 0��; �max� � 0; ���; �max� � 0 �27�
where �max is a sufficiently large value of � at which the boundary
conditions (13) are satisfied. �max varies with the value of n. In the
present work, a value of �max = 25 was checked to be sufficient for free
stream behavior.

. The two-dimensional domain of interest (�; �) is discretized with an
equispaced mesh in the �-direction and another equispaced mesh in the
�-direction.

. The partial derivatives with respect to � are evaluated by the second
order difference approximation.

. Two iteration loops based on the successive substitution are used
because of the nonlinearity of the equations.

. In each inner iteration loop, the value of � is fixed while each of the
equations (11) and (12) is solved as a linear second order boundary value
problem of ODE on the �-domain. The inner iteration is continued until
the nonlinear solution converges with a convergence criterion of 10ÿ6 in
all cases for the fixed value of �.

. In the outer iteration loop, the value of � is advanced. The derivatives
with respect to � are updated after every outer iteration step.

In the inner iteration step, the finite difference approximation for equations (11)
and (12) is solved as a boundary value problem. We consider equation (11) first.
By defining f = �, equation (11) may be written in the form

a1�
0 � b1� � S1 �28�

where

a1 � ��0�nÿ1

b1 � 0

S1 � �
�29�

The coefficients a1, b1 and the source term in equation (28) in the inner iteration
step are evaluated by using the solution from the previous iteration step.
Equation (28) is then transformed to a finite difference equation by applying
the central difference approximations to the first and second derivatives. The
finite difference equations form a tridiagonal system and can be solved by the
tridiagonal solution scheme.
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Equation (12) is also written as a second-order boundary value problem
similar to equation (29), namely

a2�}� b2�
0 � c2� � S2 �30�

where

a2 � 1

b2 � n� �
2n

�

c2 � ÿ��0

S2 � nÿ �
2n

� �0
@�

@�
ÿ �0

@�

@�

� � �31�

The gradients @�
@� and @�

@� were evaluated to a first-order finite difference
approximation using the present value of � (unknown) and the previous value
of � ÿ�� (known), with the unknown present value moved to the left-hand side
of equation (30).

Table I.
Comparison of values
of ÿ�0�0� and f�1� for
� � 0

Present results Chen and Chen
n ÿ�0�0� f�1� ÿ�0�0� f�1�

0.5 0.37681 1.08755 0.3768 1.089
0.8 0.42374 1.42078 0.4238 1.421
1.0 0.44371 1.60878 0.4437 1.618
1.5 0.47520 2.01524 0.4752 2.053
2.0 0.49383 2.31914 0.4938 2.403
2.5 0.50562 2.60277 0.5059 2.728

Table II.
Comparison of values
of ÿ�0�0� for n = 1

ÿ�0�0�
� Present results Hsieh et al.

0.0 0.44371 0.4438
0.5 0.77004 0.7704
1.0 0.99998 1.0000

Table III.
Comparison of values
of 1=��0� for n = 1

1=��0�
� Present results Hsieh et al.

±0.5 0.58179 0.5818
0.0 0.77146 0.7715
0.5 0.89980 0.8998
1.0 1.00000 0.9999
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The numerical results are affected by the number of mesh points in both
directions. To obtain accurate results, a mesh sensitivity study was performed.
After some trials, in the �-direction 190 mesh points were chosen whereas in the
�-direction, 41 mesh points were used. The tolerance for convergence was 10ÿ6.
Increasing the mesh points to a larger value led to identical results, up to seven
significant decimal places.

The two systems of partial differential equations (11)-(13) and (19)-(21)
have similar form. Thus, they were solved using the procedure described
above.

Figure 2.
Velocity profiles for � =

0.5 (variable surface
temperature case)

Figure 3.
Temperature profiles for
� = 0.5 (variable surface

temperature case)
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Results and discussion
Numerical results for �0��; 0� and 1=���; 0� for the variable surface temperature
case and variable surface heat flux case, respectively are tabulated in Tables I,
II and III. In order to assess the accuracy of the numerical results, we compare
our results for Newtonian fluid (n = 1) with those of Hsieh et al. (1993). The
agreement between the two is within 0.01 per cent difference. Therefore, the
present results are highly accurate.

The velocity and temperature profiles are displayed for the variable surface
temperature case in Figures 2, 3, 4, 5 for a range of values of n, � and �. The

Figure 4.
Velocity profiles for n =
1.5 (variable surface
temperature case)

Figure 5.
Temperature profiles for
n = 1.5 (variable surface
temperature case)



Nonsimilar
solutions for free

convection

857

boundary layer thickness decreases as � decreases. The slip velocity at the porous
surface f 0��; 0� increases with the viscosity index n and �. The surface temperature
gradient and hence the heat transfer rate increase as �, n and � increase.

Figures 6 and 7 display the variation of Nusselt number versus � for
the variable surface temperature case. Here, n ranged from 0.5 to 1.5 and � ranged
from 0 to 1.5. As � increases, the Nusselt number increases for a given n.
As n increases, the heat transfer rate parameter increases. The effect of surface
mass transfer on heat transfer rate will be discussed now. The Nusselt number
decreases with injection but the effect of suction is opposite. The thickness of the
thermal boundary layer increases with injection but the effect of suction is
opposite.

Figure 6.
Local Nusselt number

versus � (variable
surface temperature

case)

Figure 7.
Local Nusselt number

versus � (variable
surface temperature

case)
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In the interest of conserving space, the velocity and temperature profiles are not
presented for the variable surface heat flux case. Figures 8 and 9 display the
variation of Nusselt number versus � for the variable surface heat flux case.
Here, n ranged from 0.5 to 1.5 and � ranged from 0 to 1.5. As � and � increase,
the Nusselt number increases for a given n. As n increases, the heat transfer
rate parameter increases.

Concluding remarks
In this paper, we have presented a boundary layer analysis for the free
convection in non-Newtonian fluids along a vertical plate embedded in a

Figure 8.
Local Nusselt number
versus � (variable
surface heat flux case)

Figure 9.
Local Nusselt number
versus � (variable
surface heat flux case)
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fluid-saturated porous medium. Numerical solutions using a finite difference
scheme were obtained for the flow and temperature fields for several values of
the exponent � for the surface temperature or heat flux variation and the
viscosity index, n.
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